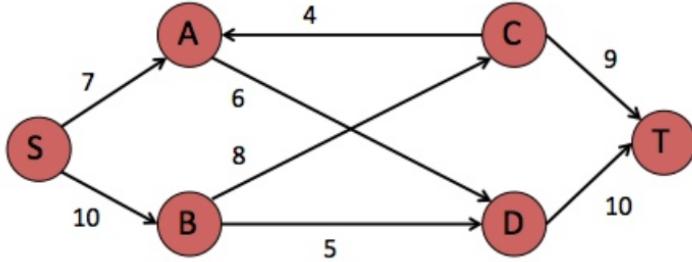


Advanced Algorithms — Exercise Set 1

Name: _____

- Submit in class on **February 3, 2026**.
- Feel free to discuss with others, but write up your own solutions.
- Half points on this exercise set are awarded for completion / effort. Use it to learn!



Problem 1 (Go with the flow).

- Find the maximum flow f for the graph above and a minimum cut. Don't just state the max-flow value, but also how much flow is sent along each edge.
- Draw the residual graph G_f at this maximum flow.
- An edge of a network is called a *bottleneck edge* if increasing its capacity results in an increase in the maximum flow (without changing any other capacities in the network). List all of the bottleneck edges in the above network.
- Give a simple example of a flow network which has no bottleneck edges.

Solution.

Problem 2 (Unit capacity networks). State the running time of the Ford-Fulkerson algorithm that we showed in class. Now, consider the special case of max-flow in which every edge in the network has a capacity of 1. Explain why the running time of the Ford-Fulkerson algorithm is $O(mn)$ in this special case.

Solution.

Problem 3 (Bonus!). In class, we showed that in every flow network with integer capacities, there is **some** max-flow which has all integer values. Give an example of a flow network with all integer capacities and a maximum flow on that network which has a non-integer value on at least one edge.

Solution.

Problem 4 (Multi-source / Multi-sink reduction). In this problem we consider the generalization of the maximum flow problem with multiple source vertices $s_1, \dots, s_k \in V$ and multiple sink vertices $t_1, \dots, t_\ell \in V$. We still assume that no vertex is both a source and a sink, source vertices have no incoming edges, and sink vertices have no outgoing edges. A flow is defined as before: a nonnegative number f_e for each $e \in E$ such that capacity constraints hold on every edge and conservation holds at every vertex that is neither a source nor a sink.

The value of a flow is the total outgoing flow at the sources:

$$\sum_{i=1}^k \text{flow out of } s_i$$

Explain how to solve the maximum flow problem in graphs with multiple sources and sinks using the single-source single-sink version. (Hint: Consider adding additional vertices and/or edges.)

Solution.

Problem 5 (Global Minimum-cuts). In the (undirected) global minimum cut problem, the input is an undirected graph $G = (V, E)$ with a nonnegative capacity c_e for each edge $e \in E$, and the goal is to identify a **global cut**, i.e., a partition of V into non-empty sets A and B that minimizes the total capacity $\sum_{e \in \delta(A)} c_e$ of the cut edges. (Here, $\delta(A)$ denotes the edges with exactly one endpoint in A .)

Explain why this problem reduces to solving $\binom{n}{2}$ maximum flow problems in undirected graphs. That is, given an instance of the global minimum cut problem, show how to

1. produce $\binom{n}{2}$ instances of the maximum flow problem (in undirected graphs) such that
2. given maximum flows to these $\binom{n}{2}$ instances, you can compute an optimal solution to the global minimum cut instance.

[Hint: remember that you can use max-flow to get the minimum capacity cut which separates any given pair of vertices]

Bonus: there is a way to do this with only $n - 1$ max-flow computations. Can you see how?

Solution.